TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 12, December 2006, Pages 5631–5633 S 0002-9947(06)04200-0 Article electronically published on July 21, 2006

CORRIGENDUM TO "WEST'S PROBLEM ON EQUIVARIANT HYPERSPACES AND BANACH-MAZUR COMPACTA"

SERGEY ANTONYAN

In our article [1], on p. 3389, the definition of the weak topology of the G-nerve $\mathcal{N}(\mathcal{U})$ contains a gap. Namely, it is claimed there that the topology on $\mathcal{N}(\mathcal{U})$ induced from \mathcal{J} is the weak one, which is false. The author apologizes for this mistake.

Nevertheless, in the proofs of Lemmas 4.2, 4.4 and 5.2, where the topology of $\mathcal{N}(\mathcal{U})$ is essential, in fact the right weak topology of $\mathcal{N}(\mathcal{U})$ was applied. Thus, all of the proofs given in [1] are correct and complete.

Using the notation and references adopted in [1], the above-mentioned gap in the definition of the topology of the G-nerve $\mathcal{N}(\mathcal{U})$ may be filled by replacing the text on p. 3389 starting in line 26 and ending in line 35, by the following.

"For every simplex $L = \langle \mu_0, \dots, \mu_n \rangle \subset \widetilde{\mathcal{N}}(\mathcal{U})$, set

$$\Delta(L) = \bigcup \{\Delta(S, F_S) \mid S \text{ is a subsimplex of } L\}.$$

Clearly, $\Delta(L)$ is an invariant subset of the finite join $G/H_{\mu_0} * \cdots * G/H_{\mu_n}$. We always will consider the induced topology and G-action on $\Delta(L)$. Observe that, if N is a subsimplex of L, then $\Delta(N)$ is a closed invariant subset of $\Delta(L)$. Indeed, let $\xi: G/H_{\mu_0} * \cdots * G/H_{\mu_n} \to L$ be the continuous map sending the point $\sum_{i=0}^n t_{\mu_i} g_{\mu_i} H_{\mu_i} \in G/H_{\mu_0} * \cdots * G/H_{\mu_n}$ to the point $\sum_{i=0}^n t_{\mu_i} \mu_i \in L$. Since $P_{LN}(F_L) \subset F_N$, where $P_{LN}: \prod_{\mu \in L} G/H_{\mu} \to \prod_{\mu \in N} G/H_{\mu}$ is the Cartesian projection, we see that the preimage $\xi^{-1}(N)$ is just $\Delta(N)$. Since N is closed in L, this yields that $\Delta(N)$ is closed in $\Delta(L)$, as required. Invariance of $\Delta(N)$ is evident.

It is clear that, if $K \subset \widetilde{\mathcal{N}}(\mathcal{U})$ is yet another simplex, then $\Delta(L) \cap \Delta(K) = \Delta(L \cap K)$. Consequently, $\Delta(L) \cap \Delta(K)$ is closed in both $\Delta(L)$ and $\Delta(K)$. Consider the following invariant subset of \mathcal{J} :

$$\mathcal{N}(\mathcal{U}) = \bigcup \left\{ \Delta(L) \mid L \in \widetilde{\mathcal{N}}(\mathcal{U}) \right\}.$$

We consider the weak topology on $\mathcal{N}(\mathcal{U})$ determined by the family

$$\left\{ \Delta(L) \mid L \in \widetilde{\mathcal{N}}(\mathcal{U}) \right\}.$$

Namely, a set $U \subset \mathcal{N}(\mathcal{U})$ is, by definition, open in $\mathcal{N}(\mathcal{U})$ if and only if $U \cap \Delta(L)$ is open in $\Delta(L)$ for every simplex $L \subset \widetilde{\mathcal{N}}(\mathcal{U})$.

Key words and phrases. G-nerve, weak topology.

Received by the editors October 13, 2004 and, in revised form, November 1, 2005.

2000 Mathematics Subject Classification. Primary 57N20, 57S10, 54B20, 54C55, 55P91, 46B99

The G-action on $\mathcal{N}(\mathcal{U})$, defined by the following formula, makes $\mathcal{N}(\mathcal{U})$ a G-space, called the G-nerve of \mathcal{U} :

$$g * \left(\sum_{\mu \in M} t_{\mu} g'_{\mu} H_{\mu} \right) = \sum_{\mu \in M} t_{\mu} g g'_{\mu} H_{\mu}, \qquad g \in G.$$

Since the intersection $\Delta(L) \cap \Delta(K)$ is closed in both $\Delta(L)$ and $\Delta(K)$, we see that each space $\Delta(L)$ retains its original topology and is a closed invariant subset of $\mathcal{N}(\mathcal{U})$ (see, e.g., [2, Ch. VI, §8]). We call $\Delta(L)$ a G-n-simplex over the n-simplex L.

In the proofs of Lemmas 4.4 and 5.2 the following well-known and easily proved property of the weak topology is used: a map $f: \mathcal{N}(\mathcal{U}) \to Z$ is continuous if and only if each restriction $f|_{\Delta(L)}$ is continuous."

As is defined on page 3389, lines 9–10, the elements of a G-normal cover \mathcal{U} are tubular slice-sets gS_{μ} with companion groups H_{μ} . However, in order to emphasize the role of H_{μ} , we have used the denotation (gS_{μ}, H_{μ}) instead of gS_{μ} , which in some occasions may cause confusion. Thus, in Lemmas 4.1, 4.2 and 5.2 the denotation $\mathcal{U} = \{(gS_{\mu}, H_{\mu}) \mid g \in G, \mu \in M\}$ should be replaced by $\mathcal{U} = \{gS_{\mu} \mid g \in G, \mu \in M\}$, where S_{μ} is an H_{μ} -slice.

For the proof of Lemma 5.2 it is important to formulate Lemma 4.1 in the following more precise form.

Lemma 4.1. Let X be a paracompact G-space and \mathcal{V} an open cover of X. Then X admits a G-normal cover $\mathcal{U} = \{gS_{\lambda} \mid g \in G, \lambda \in \Lambda\}$ with the companion groups $\{H_{\lambda}\}_{{\lambda} \in \Lambda}$ such that each H_{λ} is the stabilizer of a point $x_{\lambda} \in S_{\lambda}$ and \mathcal{U} is a starrefinement of \mathcal{V} .

In Lemma 5.2 under the term " ε -cover" we mean the family of *all* open balls in $L_0(n)$ which have radius ε .

In the formulation and in the proof of Lemma 5.2, always G = O(n).

Also, one should correct the following misprints:

- (1) page 3389, line 14: " $O \in U_1$ " should be " $O \in \mathcal{U}_1$ ".
- (2) page 3389, line 20: "of \mathcal{U} " should be "of \mathcal{V} ".
- (3) page 3390, line 27: " (gS_x, G_x) " should be " gS_x ".
- (4) page 3390, line 30: "an open G-normal cover" should be "a G-normal cover".
- (5) page 3391, line 28: " $\Delta(L, F_L)$ " should be " $\Delta(L)$ ".
- (6) page 3392, line 2: " $R(x) \in \mathcal{F}_{3^{n-1}}(s)$ " should be " $R(x) \in \mathcal{F}_{3^{n-1}}(s^1)$, where s^1 is the 1-dimensional skeleton of s".
- (7) page 3392, line 7: " $\Delta(L, F_L)$ " should be " $\Delta(L)$ ".
- (8) page 3392, line 13: " $\mathcal{F}_{3^{n-1}}(s) \subset$ " should be " $\mathcal{F}_{3^{n-1}}(s^1) \subset$ ".
- (9) page 3394, line 30: " $q'(g_1A_\mu) = q''(g_0A_\lambda)$ " should be " $q'(g_1H_\mu) = q''(g_0H_\lambda)$ ".
- (10) page 3394, line 36: "of $g_0 A_{\lambda}$ " should be "of $g_0 A_{\lambda} \cup g_1 A_{\mu}$ ".
- (11) page 3394, line 41: "of g_1A_{μ} " should be "of $g_0A_{\lambda} \cup g_1A_{\mu}$ ".
- (12) page 3398, line 22: "domain. Since" should be "domain V. Since".

References

- S. A. Antonyan, West's problem on equivariant hyperspaces and Banach-Mazur compacta, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3379

 –3404. MR1974693 (2004d:57028)
- 2. J. Dugundji, *Topology*, Allyn and Bacon Inc., Boston, 1966. MR0193606 (33:1824)

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, MÉXICO D.F. 04510, MÉXICO

 $E\text{-}mail\ address{:}\ \mathtt{antonyan@servidor.unam.mx}$